1
JEE Main 2019 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let
A = $$\left\{ {\theta \in \left( { - {\pi \over 2},\pi } \right):{{3 + 2i\sin \theta } \over {1 - 2i\sin \theta }}is\,purely\,imaginary} \right\}$$
. Then the sum of the elements in A is :
A
$${5\pi \over 6}$$
B
$$\pi $$
C
$${3\pi \over 4}$$
D
$${{2\pi } \over 3}$$
2
JEE Main 2019 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
For any $$\theta \in \left( {{\pi \over 4},{\pi \over 2}} \right)$$, the expression

$$3{(\cos \theta - \sin \theta )^4}$$$$ + 6{(\sin \theta + \cos \theta )^2} + 4{\sin ^6}\theta $$

equals :
A
13 – 4 cos2$$\theta $$ + 6sin2$$\theta $$cos2$$\theta $$
B
13 – 4 cos6$$\theta $$
C
13 – 4 cos2$$\theta $$ + 6cos2$$\theta $$
D
13 – 4 cos4$$\theta $$ + 2sin2$$\theta $$cos2$$\theta $$
3
JEE Main 2019 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The system of linear equations
x + y + z = 2
2x + 3y + 2z = 5
2x + 3y + (a2 – 1) z = a + 1 then
A
has infinitely many solutions for a = 4
B
has a unique solution for |a| = $$\sqrt3$$
C
is inconsistent when |a| = $$\sqrt3$$
D
is inconsistent when a = 4
4
JEE Main 2019 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The maximum volume (in cu.m) of the right circular cone having slant height 3 m is :
A
2$$\sqrt3$$$$\pi $$
B
3$$\sqrt3$$$$\pi $$
C
6$$\pi $$
D
$${4 \over 3}\pi $$
JEE Main Papers
2023
2021
EXAM MAP