1
JEE Main 2019 (Online) 12th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let z $$ \in $$ C with Im(z) = 10 and it satisfies $${{2z - n} \over {2z + n}}$$ = 2i - 1 for some natural number n. Then :
A
n = 20 and Re(z) = –10
B
n = 40 and Re(z) = 10
C
n = 40 and Re(z) = –10
D
n = 20 and Re(z) = 10
2
JEE Main 2019 (Online) 12th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
A value of $$\theta \in \left( {0,{\pi \over 3}} \right)$$, for which
$$\left| {\matrix{ {1 + {{\cos }^2}\theta } & {{{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {1 + {{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {{{\sin }^2}\theta } & {1 + 4\cos 6\theta } \cr } } \right| = 0$$, is :
A
$${\pi \over {18}}$$
B
$${\pi \over {9}}$$
C
$${{7\pi } \over {24}}$$
D
$${{7\pi } \over {36}}$$
3
JEE Main 2019 (Online) 12th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{x \to 0} {{x + 2\sin x} \over {\sqrt {{x^2} + 2\sin x + 1} - \sqrt {{{\sin }^2}x - x + 1} }}$$ is :
A
6
B
1
C
3
D
2
4
JEE Main 2019 (Online) 12th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The derivative of $${\tan ^{ - 1}}\left( {{{\sin x - \cos x} \over {\sin x + \cos x}}} \right)$$, with respect to $${x \over 2}$$ , where $$\left( {x \in \left( {0,{\pi \over 2}} \right)} \right)$$ is :
A
1
B
2
C
$${2 \over 3}$$
D
$${1 \over 2}$$
JEE Main Papers
2023
2021
EXAM MAP