(i) $$\mathrm{X}(\mathrm{g}) \rightleftharpoons \mathrm{Y}(\mathrm{g})+\mathrm{Z}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{p} 1}=3$$
(ii) $$\mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{p} 2}=1$$
If the degree of dissociation and initial concentration of both the reactants $$\mathrm{X}(\mathrm{g})$$ and $$\mathrm{A}(\mathrm{g})$$ are equal, then the ratio of the total pressure at equilibrium $$\left(\frac{p_{1}}{p_{2}}\right)$$ is equal to $$\mathrm{x}: 1$$. The value of $$\mathrm{x}$$ is _____________ (Nearest integer)
For reaction : $$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$$
$$\mathrm{K}_{\mathrm{p}}=2 \times 10^{12}$$ at $$27^{\circ} \mathrm{C}$$ and $$1 \mathrm{~atm}$$ pressure. The $$\mathrm{K}_{\mathrm{c}}$$ for the same reaction is ____________ $$\times 10^{13}$$. (Nearest integer)
(Given $$\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$$)
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g), \Delta H=-190 \mathrm{~kJ}$
The number of factors which will increase the yield of $\mathrm{SO}_{3}$ at equilibrium from the following is _______.
A. Increasing temperature
B. Increasing pressure
C. Adding more $\mathrm{SO}_{2}$
D. Adding more $\mathrm{O}_{2}$
E. Addition of catalyst
At 298 K
$$\mathrm{N_2~(g)+3H_2~(g)\rightleftharpoons~2NH_3~(g),~K_1=4\times10^5}$$
$$\mathrm{N_2~(g)+O_2~(g)\rightleftharpoons~2NO~(g),~K_2=1.6\times10^{12}}$$
$$\mathrm{H_2~(g)+\frac{1}{2}O_2~(g)\rightleftharpoons~H_2O~(g),~K_3=1.0\times10^{-13}}$$
Based on above equilibria, then equilibrium constant of the reaction, $$\mathrm{2NH_3(g)+\frac{5}{2}O_2~(g)\rightleftharpoons~2NO~(g)+3H_2O~(g)}$$ is ____________ $$\times10^{-33}$$ (Nearest integer).