Consider the following equilibrium,
$$\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_3 \mathrm{OH}(\mathrm{~g})$$
0.1 mol of CO along with a catalyst is present in a $2 \mathrm{dm}^3$ flask maintained at 500 K . Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of $\mathrm{CH}_3 \mathrm{OH}$ is formed. The $K_p^\theta$ is __________ $\times 10^{-3}$ (nearest integer).
Given : $\mathrm{R}=0.08 \mathrm{~dm}^3$ bar $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Assume only methanol is formed as the product and the system follows ideal gas behaviour.
$37.8 \mathrm{~g} \mathrm{~N}_2 \mathrm{O}_5$ was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K
$$2 \mathrm{~N}_2 \mathrm{O}_{5(\mathrm{~g})} \rightleftharpoons 2 \mathrm{~N}_2 \mathrm{O}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$$
The total pressure at equilibrium was found to be 18.65 bar.
Then, $\mathrm{Kp}=$ _________ $\times 10^{-2}$ [nearest integer]
Assume $\mathrm{N}_2 \mathrm{O}_5$ to behave ideally under these conditions.
Given: $\mathrm{R}=0.082$ bar $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
The following concentrations were observed at $$500 \mathrm{~K}$$ for the formation of $$\mathrm{NH}_3$$ from $$\mathrm{N}_2$$ and $$\mathrm{H}_2$$. At equilibrium ; $$\left[\mathrm{N}_2\right]=2 \times 10^{-2} \mathrm{M},\left[\mathrm{H}_2\right]=3 \times 10^{-2} \mathrm{M}$$ and $$\left[\mathrm{NH}_3\right]=1.5 \times 10^{-2} \mathrm{M}$$. Equilibrium constant for the reaction is ________.
For the reaction $$\mathrm{N}_2 \mathrm{O}_{4(\mathrm{~g})} \rightleftarrows 2 \mathrm{NO}_{2(\mathrm{~g})}, \mathrm{K}_{\mathrm{p}}=0.492 \mathrm{~atm}$$ at $$300 \mathrm{~K} . \mathrm{K}_{\mathrm{c}}$$ for the reaction at same temperature is _________ $$\times 10^{-2}$$.
(Given : $$\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$$)