At $$298 \mathrm{~K}$$, the equilibrium constant is $$2 \times 10^{15}$$ for the reaction :
$$\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$$
The equilibrium constant for the reaction
$$ \frac{1}{2} \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s}) \rightleftharpoons \frac{1}{2} \mathrm{Cu}(\mathrm{s})+\mathrm{Ag}^{+}(\mathrm{aq}) $$
is $$x \times 10^{-8}$$. The value of $$x$$ is _____________. (Nearest Integer)
A box contains 0.90 g of liquid water in equilibrium with water vapour at 27$$^\circ$$C. The equilibrium vapour pressure of water at 27$$^\circ$$C is 32.0 Torr. When the volume of the box is increased, some of the liquid water evaporates to maintain the equilibrium pressure. If all the liquid water evaporates, then the volume of the box must be __________ litre. [nearest integer]
(Given : R = 0.082 L atm K$$-$$1 mol$$-$$1)
(Ignore the volume of the liquid water and assume water vapours behave as an ideal gas.)
2NOCl(g) $$\rightleftharpoons$$ 2NO(g) + Cl2(g)
In an experiment, 2.0 moles of NOCl was placed in a one-litre flask and the concentration of NO after equilibrium established, was found to be 0.4 mol/L. The equilibrium constant at 30$$^\circ$$C is ______________ $$\times$$ 10$$-$$4.
40% of HI undergoes decomposition to H2 and I2 at 300 K. $$\Delta$$G$$^\Theta $$ for this decomposition reaction at one atmosphere pressure is __________ J mol$$-$$1. [nearest integer]
(Use R = 8.31 J K$$-$$1 mol$$-$$1 ; log 2 = 0.3010, ln 10 = 2.3, log 3 = 0.477)