A student has studied the decomposition of a gas AB$$_3$$ at 25$$^\circ$$C. He obtained the following data.

p (mm Hg) | 50 | 100 | 200 | 400 |
---|---|---|---|---|

relative t$$_{1/2}$$ (s) | 4 | 2 | 1 | 0.5 |

The order of the reaction is

At $$30^{\circ} \mathrm{C}$$, the half life for the decomposition of $$\mathrm{AB}_{2}$$ is $$200 \mathrm{~s}$$ and is independent of the initial concentration of $$\mathrm{AB}_{2}$$. The time required for $$80 \%$$ of the $$\mathrm{AB}_{2}$$ to decompose is

Given: $$\log 2=0.30$$ $$\quad \log 3=0.48$$

$${K_{{a_1}}}$$, $${K_{{a_2}}}$$ and $${K_{{a_3}}}$$ are the respective ionization constants for the following reactions (a), (b) and (c).

(a) $${H_2}{C_2}{O_4} \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}} {H^ + } + H{C_2}O_4^ - $$

(b) $$H{C_2}O_4^ - \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}} {H^ + } + H{C_2}O_4^{2 - }$$

(c) $${H_2}{C_2}O_4^{} \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}} 2{H^ + } + {C_2}O_4^{2 - }$$

The relationship between $${K_{{a_1}}}$$, $${K_{{a_2}}}$$ and $${K_{{a_3}}}$$ is given as

The equilibrium constant for the reversible reaction

2A(g) $$\rightleftharpoons$$ 2B(g) + C(g) is K_{1}

$${3 \over 2}$$A(g) $$\rightleftharpoons$$ $${3 \over 2}$$B(g) + $${3 \over 4}$$C(g) is K_{2}.

K_{1} and K_{2} are related as :