Let $$\vec{a}=6 \hat{i}+9 \hat{j}+12 \hat{k}, \vec{b}=\alpha \hat{i}+11 \hat{j}-2 \hat{k}$$ and $$\vec{c}$$ be vectors such that $$\vec{a} \times \vec{c}=\vec{a} \times \vec{b}$$. If
$$\vec{a} \cdot \vec{c}=-12, \vec{c} \cdot(\hat{i}-2 \hat{j}+\hat{k})=5$$, then $$\vec{c} \cdot(\hat{i}+\hat{j}+\hat{k})$$ is equal to _______________.
If $$a_{\alpha}$$ is the greatest term in the sequence $$\alpha_{n}=\frac{n^{3}}{n^{4}+147}, n=1,2,3, \ldots$$, then $$\alpha$$ is equal to _____________.
Let $$[t]$$ denote the greatest integer $$\leq t$$. If the constant term in the expansion of $$\left(3 x^{2}-\frac{1}{2 x^{5}}\right)^{7}$$ is $$\alpha$$, then $$[\alpha]$$ is equal to ___________.
Consider a circle $$C_{1}: x^{2}+y^{2}-4 x-2 y=\alpha-5$$. Let its mirror image in the line $$y=2 x+1$$ be another circle $$C_{2}: 5 x^{2}+5 y^{2}-10 f x-10 g y+36=0$$. Let $$r$$ be the radius of $$C_{2}$$. Then $$\alpha+r$$ is equal to _________.