In a bolt factory, machines $$A, B$$ and $$C$$ manufacture respectively $$20 \%, 30 \%$$ and $$50 \%$$ of the total bolts. Of their output 3, 4 and 2 percent are respectively defective bolts. A bolt is drawn at random from the product. If the bolt drawn is found the defective, then the probability that it is manufactured by the machine $$C$$ is :
The number of ways, in which 5 girls and 7 boys can be seated at a round table so that no two girls sit together, is :
The shortest distance between the lines $$\frac{x-4}{4}=\frac{y+2}{5}=\frac{z+3}{3}$$ and $$\frac{x-1}{3}=\frac{y-3}{4}=\frac{z-4}{2}$$ is :
Let $$R$$ be the focus of the parabola $$y^{2}=20 x$$ and the line $$y=m x+c$$ intersect the parabola at two points $$P$$ and $$Q$$.
Let the point $$G(10,10)$$ be the centroid of the triangle $$P Q R$$. If $$c-m=6$$, then $$(P Q)^{2}$$ is :