1
JEE Main 2023 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If for $$z=\alpha+i \beta,|z+2|=z+4(1+i)$$, then $$\alpha+\beta$$ and $$\alpha \beta$$ are the roots of the equation :

A
$$x^{2}+2 x-3=0$$
B
$$x^{2}+3 x-4=0$$
C
$$x^{2}+x-12=0$$
D
$$x^{2}+7 x+12=0$$
2
JEE Main 2023 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the points with position vectors $$\alpha \hat{i}+10 \hat{j}+13 \hat{k}, 6 \hat{i}+11 \hat{j}+11 \hat{k}, \frac{9}{2} \hat{i}+\beta \hat{j}-8 \hat{k}$$ are collinear, then $$(19 \alpha-6 \beta)^{2}$$ is equal to :

A
16
B
49
C
36
D
25
3
JEE Main 2023 (Online) 8th April Morning Shift
Numerical
+4
-1
Change Language

Let $$[t]$$ denote the greatest integer $$\leq t$$. Then $$\frac{2}{\pi} \int_\limits{\pi / 6}^{5 \pi / 6}(8[\operatorname{cosec} x]-5[\cot x]) d x$$ is equal to __________.

Your input ____
4
JEE Main 2023 (Online) 8th April Morning Shift
Numerical
+4
-1
Change Language

Let $$A=\{0,3,4,6,7,8,9,10\}$$ and $$R$$ be the relation defined on $$A$$ such that $$R=\{(x, y) \in A \times A: x-y$$ is odd positive integer or $$x-y=2\}$$. The minimum number of elements that must be added to the relation $$R$$, so that it is a symmetric relation, is equal to ____________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP