Match List I with List II
List-I |
List-II |
||
---|---|---|---|
A. | Planck's constant (h) | I. | $$\mathrm{[{M^1}\,{L^2}\,{T^{ - 2}}]}$$ |
B. | Stopping potential (Vs) | II. | $$\mathrm{[{M^1}\,{L^1}\,{T^{ - 1}}]}$$ |
C. | Work function ($$\phi$$) | III. | $$\mathrm{[{M^1}\,{L^2}\,{T^{ - 1}}]}$$ |
D. | Momentum (p) | IV. | $$\mathrm{[{M^1}\,{L^2}\,{T^{ - 3}}\,{A^{ - 1}}]}$$ |
Choose the correct answer from the options given below :
Given below are two statements :
Statement I : An elevator can go up or down with uniform speed when its weight is balanced with the tension of its cable.
Statement II : Force exerted by the floor of an elevator on the foot of a person standing on it is more than his/her weight when the elevator goes down with increasing speed.
In the light of the above statements, choose the correct answer from the options given below :
In $$\overrightarrow E $$ and $$\overrightarrow K $$ represent electric field and propagation vectors of the EM waves in vacuum, then magnetic field vector is given by :
($$\omega$$ - angular frequency) :
A hollow cylindrical conductor has length of 3.14 m, while its inner and outer diameters are 4 mm and 8 mm respectively. The resistance of the conductor is $$n\times10^{-3}\Omega$$. If the resistivity of the material is $$\mathrm{2.4\times10^{-8}\Omega m}$$. The value of $$n$$ is ___________.