As per given figure, a weightless pulley P is attached on a double inclined frictionless surfaces. The tension in the string (massless) will be (if g = 10 m/s$$^2$$)
Given below are two statements :
Statement I : If the Brewster's angle for the light propagating from air to glass is $$\mathrm{\theta_B}$$, then the Brewster's angle for the light propagating from glass to air is $$\frac{\pi}{2}-\theta_B$$
Statement II : The Brewster's angle for the light propagating from glass to air is $${\tan ^{ - 1}}({\mu _\mathrm{g}})$$ where $$\mathrm{\mu_g}$$ is the refractive index of glass.
In the light of the above statements, choose the correct answer from the options given below :
A 100 m long wire having cross-sectional area $$\mathrm{6.25\times10^{-4}~m^2}$$ and Young's modulus is $$\mathrm{10^{10}~Nm^{-2}}$$ is subjected to a load of 250 N, then the elongation in the wire will be :
The weight of a body at the surface of earth is 18 N. The weight of the body at an altitude of 3200 km above the earth's surface is (given, radius of earth $$\mathrm{R_e=6400~km}$$) :