$$\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB} . \Delta H_{f}^{0}=-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
$$\mathrm{AB}, \mathrm{A}_{2}$$ and $$\mathrm{B}_{2}$$ are diatomic molecules. If the bond enthalpies of $$\mathrm{A}_{2}, \mathrm{~B}_{2}$$ and $$\mathrm{AB}$$ are in the ratio $$1: 0.5: 1$$, then the bond enthalpy of $$\mathrm{A}_{2}$$ is ____________ $$\mathrm{kJ} ~\mathrm{mol}^{-1}$$ (Nearest integer)
$$25.0 \mathrm{~mL}$$ of $$0.050 ~\mathrm{M} ~\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$$ is mixed with $$25.0 \mathrm{~mL}$$ of $$0.020 ~\mathrm{M} ~\mathrm{NaF} . \mathrm{K}_{\mathrm{Sp}}$$ of $$\mathrm{BaF}_{2}$$ is $$0.5 \times 10^{-6}$$ at $$298 \mathrm{~K}$$. The ratio of $$\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}$$ and $$\mathrm{K}_{\mathrm{sp}}$$ is ___________.
(Nearest integer)
The area of the region enclosed by the curve $$f(x)=\max \{\sin x, \cos x\},-\pi \leq x \leq \pi$$ and the $$x$$-axis is
Let $$\mathrm{PQ}$$ be a focal chord of the parabola $$y^{2}=36 x$$ of length 100 , making an acute angle with the positive $$x$$-axis. Let the ordinate of $$\mathrm{P}$$ be positive and $$\mathrm{M}$$ be the point on the line segment PQ such that PM : MQ = 3 : 1. Then which of the following points does NOT lie on the line passing through M and perpendicular to the line $$\mathrm{PQ}$$?