The number of seven digit positive integers formed using the digits $$1,2,3$$ and $$4$$ only and sum of the digits equal to $$12$$ is ___________.
If $$S=\left\{x \in \mathbb{R}: \sin ^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right)-\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}\right\}$$, then $$\sum_\limits{x \in s}\left(\sin \left(\left(x^{2}+x+5\right) \frac{\pi}{2}\right)-\cos \left(\left(x^{2}+x+5\right) \pi\right)\right)$$ is equal to ____________.
Let for $$x \in \mathbb{R}, S_{0}(x)=x, S_{k}(x)=C_{k} x+k \int_{0}^{x} S_{k-1}(t) d t$$, where
$$C_{0}=1, C_{k}=1-\int_{0}^{1} S_{k-1}(x) d x, k=1,2,3, \ldots$$ Then $$S_{2}(3)+6 C_{3}$$ is equal to ____________.
Let $$\vec{a}=3 \hat{i}+\hat{j}-\hat{k}$$ and $$\vec{c}=2 \hat{i}-3 \hat{j}+3 \hat{k}$$. If $$\vec{b}$$ is a vector such that $$\vec{a}=\vec{b} \times \vec{c}$$ and $$|\vec{b}|^{2}=50$$, then $$|72-| \vec{b}+\left.\vec{c}\right|^{2} \mid$$ is equal to __________.