Let $$B=\left[\begin{array}{lll}1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4\end{array}\right], \alpha > 2$$ be the adjoint of a matrix $$A$$ and $$|A|=2$$. Then $$\left[\begin{array}{ccc}\alpha & -2 \alpha & \alpha\end{array}\right] B\left[\begin{array}{c}\alpha \\ -2 \alpha \\ \alpha\end{array}\right]$$ is equal to :
Fractional part of the number $$\frac{4^{2022}}{15}$$ is equal to
For $$x \in \mathbb{R}$$, two real valued functions $$f(x)$$ and $$g(x)$$ are such that, $$g(x)=\sqrt{x}+1$$ and $$f \circ g(x)=x+3-\sqrt{x}$$. Then $$f(0)$$ is equal to
For the differentiable function $$f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$$, let $$3 f(x)+2 f\left(\frac{1}{x}\right)=\frac{1}{x}-10$$, then $$\left|f(3)+f^{\prime}\left(\frac{1}{4}\right)\right|$$ is equal to