An electron is moving along the positive $$\mathrm{x}$$-axis. If the uniform magnetic field is applied parallel to the negative z-axis, then
A. The electron will experience magnetic force along positive y-axis
B. The electron will experience magnetic force along negative y-axis
C. The electron will not experience any force in magnetic field
D. The electron will continue to move along the positive $$\mathrm{x}$$-axis
E. The electron will move along circular path in magnetic field
Choose the correct answer from the options given below:
A particle executes SHM of amplitude A. The distance from the mean position when its's kinetic energy becomes equal to its potential energy is :
A passenger sitting in a train A moving at $$90 \mathrm{~km} / \mathrm{h}$$ observes another train $$\mathrm{B}$$ moving in the opposite direction for $$8 \mathrm{~s}$$. If the velocity of the train B is $$54 \mathrm{~km} / \mathrm{h}$$, then length of train B is:
Three point charges $$\mathrm{q},-2 \mathrm{q}$$ and $$2 \mathrm{q}$$ are placed on $x$-axis at a distance $$x=0, x=\frac{3}{4} R$$ and $$x=R$$ respectively from origin as shown. If $$\mathrm{q}=2 \times 10^{-6} \mathrm{C}$$ and $$\mathrm{R}=2 \mathrm{~cm}$$, the magnitude of net force experienced by the charge $$-2 q$$ is ___________ N.