1
JEE Main 2023 (Online) 13th April Evening Shift
Numerical
+4
-1
Change Language

If $$y=y(x)$$ is the solution of the differential equation

$$\frac{d y}{d x}+\frac{4 x}{\left(x^{2}-1\right)} y=\frac{x+2}{\left(x^{2}-1\right)^{\frac{5}{2}}}, x > 1$$ such that

$$y(2)=\frac{2}{9} \log _{e}(2+\sqrt{3}) \text { and } y(\sqrt{2})=\alpha \log _{e}(\sqrt{\alpha}+\beta)+\beta-\sqrt{\gamma}, \alpha, \beta, \gamma \in \mathbb{N} \text {, then } \alpha \beta \gamma \text { is equal to }$$ :

Your input ____
2
JEE Main 2023 (Online) 13th April Evening Shift
Numerical
+4
-1
Change Language

Let $$[\alpha]$$ denote the greatest integer $$\leq \alpha$$. Then $$[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]+\ldots+[\sqrt{120}]$$ is equal to __________

Your input ____
3
JEE Main 2023 (Online) 13th April Evening Shift
Numerical
+4
-1
Change Language

Total numbers of 3-digit numbers that are divisible by 6 and can be formed by using the digits $$1,2,3,4,5$$ with repetition, is _________.

Your input ____
4
JEE Main 2023 (Online) 13th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The distance travelled by an object in time $$t$$ is given by $$s=(2.5) t^{2}$$. The instantaneous speed of the object at $$\mathrm{t}=5 \mathrm{~s}$$ will be:

A
$$5 \mathrm{~ms}^{-1}$$
B
$$12.5 \mathrm{~ms}^{-1}$$
C
$$62.5 \mathrm{~ms}^{-1}$$
D
$$25 \mathrm{~ms}^{-1}$$
JEE Main Papers
2023
2021
EXAM MAP