A line segment AB of length $$\lambda$$ moves such that the points A and B remain on the periphery of a circle of radius $$\lambda$$. Then the locus of the point, that divides the line segment AB in the ratio 2 : 3, is a circle of radius :
Let $$f$$ be a differentiable function such that $${x^2}f(x) - x = 4\int\limits_0^x {tf(t)dt} $$, $$f(1) = {2 \over 3}$$. Then $$18f(3)$$ is equal to :
Let the first term $$\alpha$$ and the common ratio r of a geometric progression be positive integers. If the sum of squares of its first three terms is 33033, then the sum of these three terms is equal to
Let the complex number $$z = x + iy$$ be such that $${{2z - 3i} \over {2z + i}}$$ is purely imaginary. If $${x} + {y^2} = 0$$, then $${y^4} + {y^2} - y$$ is equal to :