If $$I(x) = \int {{e^{{{\sin }^2}x}}(\cos x\sin 2x - \sin x)dx} $$ and $$I(0) = 1$$, then $$I\left( {{\pi \over 3}} \right)$$ is equal to :
The shortest distance between the lines $${{x + 2} \over 1} = {y \over { - 2}} = {{z - 5} \over 2}$$ and $${{x - 4} \over 1} = {{y - 1} \over 2} = {{z + 3} \over 0}$$ is :
Let the ellipse $$E:{x^2} + 9{y^2} = 9$$ intersect the positive x and y-axes at the points A and B respectively. Let the major axis of E be a diameter of the circle C. Let the line passing through A and B meet the circle C at the point P. If the area of the triangle with vertices A, P and the origin O is $${m \over n}$$, where m and n are coprime, then $$m - n$$ is equal to :
Let O be the origin and the position vector of the point P be $$ - \widehat i - 2\widehat j + 3\widehat k$$. If the position vectors of the points A, B and C are $$ - 2\widehat i + \widehat j - 3\widehat k,2\widehat i + 4\widehat j - 2\widehat k$$ and $$ - 4\widehat i + 2\widehat j - \widehat k$$ respectively, then the projection of the vector $$\overrightarrow {OP} $$ on a vector perpendicular to the vectors $$\overrightarrow {AB} $$ and $$\overrightarrow {AC} $$ is :