1
JEE Main 2022 (Online) 29th July Morning Shift
Numerical
+4
-1
Change Language

Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of $$\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}}$$, in the increasing powers of $$\frac{1}{\sqrt[4]{3}}$$ be $$\sqrt[4]{6}: 1$$. If the sixth term from the beginning is $$\frac{\alpha}{\sqrt[4]{3}}$$, then $$\alpha$$ is equal to _________.

Your input ____
2
JEE Main 2022 (Online) 29th July Morning Shift
Numerical
+4
-1
Change Language

The number of matrices of order $$3 \times 3$$, whose entries are either 0 or 1 and the sum of all the entries is a prime number, is __________.

Your input ____
3
JEE Main 2022 (Online) 29th July Morning Shift
Numerical
+4
-1
Change Language

Let p and p + 2 be prime numbers and let

$$ \Delta=\left|\begin{array}{ccc} \mathrm{p} ! & (\mathrm{p}+1) ! & (\mathrm{p}+2) ! \\ (\mathrm{p}+1) ! & (\mathrm{p}+2) ! & (\mathrm{p}+3) ! \\ (\mathrm{p}+2) ! & (\mathrm{p}+3) ! & (\mathrm{p}+4) ! \end{array}\right| $$

Then the sum of the maximum values of $$\alpha$$ and $$\beta$$, such that $$\mathrm{p}^{\alpha}$$ and $$(\mathrm{p}+2)^{\beta}$$ divide $$\Delta$$, is __________.

Your input ____
4
JEE Main 2022 (Online) 29th July Morning Shift
Numerical
+4
-1
Change Language

Let $$S=\{4,6,9\}$$ and $$T=\{9,10,11, \ldots, 1000\}$$. If $$A=\left\{a_{1}+a_{2}+\ldots+a_{k}: k \in \mathbf{N}, a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right.$$ $$\epsilon S\}$$, then the sum of all the elements in the set $$T-A$$ is equal to __________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12