The integral $$\int\limits_{0}^{\frac{\pi}{2}} \frac{1}{3+2 \sin x+\cos x} \mathrm{~d} x$$ is equal to :
Let the solution curve $$y=y(x)$$ of the differential equation $$\left(1+\mathrm{e}^{2 x}\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}+y\right)=1$$ pass through the point $$\left(0, \frac{\pi}{2}\right)$$. Then, $$\lim\limits_{x \rightarrow \infty} \mathrm{e}^{x} y(x)$$ is equal to :
Let a line L pass through the point of intersection of the lines $$b x+10 y-8=0$$ and $$2 x-3 y=0, \mathrm{~b} \in \mathbf{R}-\left\{\frac{4}{3}\right\}$$. If the line $$\mathrm{L}$$ also passes through the point $$(1,1)$$ and touches the circle $$17\left(x^{2}+y^{2}\right)=16$$, then the eccentricity of the ellipse $$\frac{x^{2}}{5}+\frac{y^{2}}{\mathrm{~b}^{2}}=1$$ is :
Let the circumcentre of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), ab > 0 be P(1,1). If the line AP intersects the line BC at the point Q$$\left(k_{1}, k_{2}\right)$$, then $$k_{1}+k_{2}$$ is equal to :