Let $$a_{1}, a_{2}, a_{3}, \ldots$$ be an A.P. If $$\sum\limits_{r=1}^{\infty} \frac{a_{r}}{2^{r}}=4$$, then $$4 a_{2}$$ is equal to _________.
Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of $$\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}}$$, in the increasing powers of $$\frac{1}{\sqrt[4]{3}}$$ be $$\sqrt[4]{6}: 1$$. If the sixth term from the beginning is $$\frac{\alpha}{\sqrt[4]{3}}$$, then $$\alpha$$ is equal to _________.
The number of matrices of order $$3 \times 3$$, whose entries are either 0 or 1 and the sum of all the entries is a prime number, is __________.
Let p and p + 2 be prime numbers and let
$$ \Delta=\left|\begin{array}{ccc} \mathrm{p} ! & (\mathrm{p}+1) ! & (\mathrm{p}+2) ! \\ (\mathrm{p}+1) ! & (\mathrm{p}+2) ! & (\mathrm{p}+3) ! \\ (\mathrm{p}+2) ! & (\mathrm{p}+3) ! & (\mathrm{p}+4) ! \end{array}\right| $$
Then the sum of the maximum values of $$\alpha$$ and $$\beta$$, such that $$\mathrm{p}^{\alpha}$$ and $$(\mathrm{p}+2)^{\beta}$$ divide $$\Delta$$, is __________.