1
JEE Main 2022 (Online) 26th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of the absolute minimum and the absolute maximum values of the

function f(x) = |3x $$-$$ x2 + 2| $$-$$ x in the interval [$$-$$1, 2] is :

A
$${{\sqrt {17} + 3} \over 2}$$
B
$${{\sqrt {17} + 5} \over 2}$$
C
5
D
$${{9 - \sqrt {17} } \over 2}$$
2
JEE Main 2022 (Online) 26th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The area bounded by the curve y = |x2 $$-$$ 9| and the line y = 3 is :

A
$$4(2\sqrt 3 + \sqrt 6 - 4)$$
B
$$4(4\sqrt 3 + \sqrt 6 - 4)$$
C
$$8(4\sqrt 3 + 3\sqrt 6 - 9)$$
D
$$8(4\sqrt 3 + 2\sqrt 6 - 9)$$
3
JEE Main 2022 (Online) 26th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let R be the point (3, 7) and let P and Q be two points on the line x + y = 5 such that PQR is an equilateral triangle. Then the area of $$\Delta$$PQR is :

A
$${{25} \over {4\sqrt 3 }}$$
B
$${{25\sqrt 3 } \over 2}$$
C
$${{25} \over {\sqrt 3 }}$$
D
$${{25} \over {2\sqrt 3 }}$$
4
JEE Main 2022 (Online) 26th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the two lines $${l_1}:{{x - 2} \over 3} = {{y + 1} \over {-2}},\,z = 2$$ and $${l_2}:{{x - 1} \over 1} = {{2y + 3} \over \alpha } = {{z + 5} \over 2}$$ are perpendicular, then an angle between the lines l2 and $${l_3}:{{1 - x} \over 3} = {{2y - 1} \over { - 4}} = {z \over 4}$$ is :

A
$${\cos ^{ - 1}}\left( {{{29} \over 4}} \right)$$
B
$${\sec ^{ - 1}}\left( {{{29} \over 4}} \right)$$
C
$${\cos ^{ - 1}}\left( {{2 \over {29}}} \right)$$
D
$${\cos ^{ - 1}}\left( {{2 \over {\sqrt {29} }}} \right)$$
JEE Main Papers
2023
2021
EXAM MAP