The ordered pair (a, b), for which the system of linear equations
3x $$-$$ 2y + z = b
5x $$-$$ 8y + 9z = 3
2x + y + az = $$-$$1
has no solution, is :
The remainder when (2021)2023 is divided by 7 is :
$$\mathop {\lim }\limits_{x \to {1 \over {\sqrt 2 }}} {{\sin ({{\cos }^{ - 1}}x) - x} \over {1 - \tan ({{\cos }^{ - 1}}x)}}$$ is equal to :
Let f, g : R $$\to$$ R be two real valued functions defined as $$f(x) = \left\{ {\matrix{ { - |x + 3|} & , & {x < 0} \cr {{e^x}} & , & {x \ge 0} \cr } } \right.$$ and $$g(x) = \left\{ {\matrix{ {{x^2} + {k_1}x} & , & {x < 0} \cr {4x + {k_2}} & , & {x \ge 0} \cr } } \right.$$, where k1 and k2 are real constants. If (gof) is differentiable at x = 0, then (gof) ($$-$$ 4) + (gof) (4) is equal to :