Given below are two statements. One is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : Two identical balls A and B thrown with same velocity 'u' at two different angles with horizontal attained the same range R. IF A and B reached the maximum height h1 and h2 respectively, then $$R = 4\sqrt {{h_1}{h_2}} $$
Reason R : Product of said heights.
$${h_1}{h_2} = \left( {{{{u^2}{{\sin }^2}\theta } \over {2g}}} \right)\,.\,\left( {{{{u^2}{{\cos }^2}\theta } \over {2g}}} \right)$$
Choose the correct answer :
Two buses P and Q start from a point at the same time and move in a straight line and their positions are represented by $${X_P}(t) = \alpha t + \beta {t^2}$$ and $${X_Q}(t) = ft - {t^2}$$. At what time, both the buses have same velocity?
A disc with a flat small bottom beaker placed on it at a distance R from its center is revolving about an axis passing through the center and perpendicular to its plane with an angular velocity $$\omega$$. The coefficient of static friction between the bottom of the beaker and the surface of the disc is $$\mu$$. The beaker will revolve with the disc if :
A solid metallic cube having total surface area 24 m2 is uniformly heated. If its temperature is increased by 10$$^\circ$$C, calculate the increase in volume of the cube. (Given $$\alpha$$ = 5.0 $$\times$$ 10$$-$$4 $$^\circ$$C$$-$$1).