The line y = x + 1 meets the ellipse $${{{x^2}} \over 4} + {{{y^2}} \over 2} = 1$$ at two points P and Q. If r is the radius of the circle with PQ as diameter then (3r)2 is equal to :
Let $$A = \left( {\matrix{ 2 & { - 2} \cr 1 & { - 1} \cr } } \right)$$ and $$B = \left( {\matrix{ { - 1} & 2 \cr { - 1} & 2 \cr } } \right)$$. Then the number of elements in the set {(n, m) : n, m $$\in$$ {1, 2, .........., 10} and nAn + mBm = I} is ____________.
Let $$f(x) = \left[ {2{x^2} + 1} \right]$$ and $$g(x) = \left\{ {\matrix{ {2x - 3,} & {x < 0} \cr {2x + 3,} & {x \ge 0} \cr } } \right.$$, where [t] is the greatest integer $$\le$$ t. Then, in the open interval ($$-$$1, 1), the number of points where fog is discontinuous is equal to ______________.
The value of b > 3 for which $$12\int\limits_3^b {{1 \over {({x^2} - 1)({x^2} - 4)}}dx = {{\log }_e}\left( {{{49} \over {40}}} \right)} $$, is equal to ___________.