If the mean deviation about the mean of the numbers 1, 2, 3, .........., n, where n is odd, is $${{5(n + 1)} \over n}$$, then n is equal to ______________.
Let $$\overrightarrow b = \widehat i + \widehat j + \lambda \widehat k$$, $$\lambda$$ $$\in$$ R. If $$\overrightarrow a $$ is a vector such that $$\overrightarrow a \times \overrightarrow b = 13\widehat i - \widehat j - 4\widehat k$$ and $$\overrightarrow a \,.\,\overrightarrow b + 21 = 0$$, then $$\left( {\overrightarrow b - \overrightarrow a } \right).\,\left( {\widehat k - \widehat j} \right) + \left( {\overrightarrow b + \overrightarrow a } \right).\,\left( {\widehat i - \widehat k} \right)$$ is equal to _____________.
The total number of three-digit numbers, with one digit repeated exactly two times, is ______________.
Let $$f(x) = |(x - 1)({x^2} - 2x - 3)| + x - 3,\,x \in R$$. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ____________.