Let $$f$$ be a twice differentiable function on $$\mathbb{R}$$. If $$f^{\prime}(0)=4$$ and $$f(x) + \int\limits_0^x {(x - t)f'(t)dt = \left( {{e^{2x}} + {e^{ - 2x}}} \right)\cos 2x + {2 \over a}x} $$, then $$(2 a+1)^{5}\, a^{2}$$ is equal to _______________.
Let $${a_n} = \int\limits_{ - 1}^n {\left( {1 + {x \over 2} + {{{x^2}} \over 3} + \,\,.....\,\, + \,\,{{{x^{n - 1}}} \over n}} \right)dx} $$ for every n $$\in$$ N. Then the sum of all the elements of the set {n $$\in$$ N : an $$\in$$ (2, 30)} is ____________.
Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve $$4{x^3} - 3x{y^2} + 6{x^2} - 5xy - 8{y^2} + 9x + 14 = 0$$ at the point ($$-$$2, 3) be A. Then 8A is equal to ______________.
Let $$x = \sin (2{\tan ^{ - 1}}\alpha )$$ and $$y = \sin \left( {{1 \over 2}{{\tan }^{ - 1}}{4 \over 3}} \right)$$. If $$S = \{ a \in R:{y^2} = 1 - x\} $$, then $$\sum\limits_{\alpha \in S}^{} {16{\alpha ^3}} $$ is equal to _______________.