1
JEE Main 2022 (Online) 25th July Evening Shift
Numerical
+4
-1
Change Language

Let $$f$$ be a twice differentiable function on $$\mathbb{R}$$. If $$f^{\prime}(0)=4$$ and $$f(x) + \int\limits_0^x {(x - t)f'(t)dt = \left( {{e^{2x}} + {e^{ - 2x}}} \right)\cos 2x + {2 \over a}x} $$, then $$(2 a+1)^{5}\, a^{2}$$ is equal to _______________.

Your input ____
2
JEE Main 2022 (Online) 25th July Evening Shift
Numerical
+4
-1
Change Language

Let $${a_n} = \int\limits_{ - 1}^n {\left( {1 + {x \over 2} + {{{x^2}} \over 3} + \,\,.....\,\, + \,\,{{{x^{n - 1}}} \over n}} \right)dx} $$ for every n $$\in$$ N. Then the sum of all the elements of the set {n $$\in$$ N : an $$\in$$ (2, 30)} is ____________.

Your input ____
3
JEE Main 2022 (Online) 25th July Evening Shift
Numerical
+4
-1
Change Language

Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve $$4{x^3} - 3x{y^2} + 6{x^2} - 5xy - 8{y^2} + 9x + 14 = 0$$ at the point ($$-$$2, 3) be A. Then 8A is equal to ______________.

Your input ____
4
JEE Main 2022 (Online) 25th July Evening Shift
Numerical
+4
-1
Change Language

Let $$x = \sin (2{\tan ^{ - 1}}\alpha )$$ and $$y = \sin \left( {{1 \over 2}{{\tan }^{ - 1}}{4 \over 3}} \right)$$. If $$S = \{ a \in R:{y^2} = 1 - x\} $$, then $$\sum\limits_{\alpha \in S}^{} {16{\alpha ^3}} $$ is equal to _______________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12