1
JEE Main 2022 (Online) 25th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$[t]$$ denote the greatest integer less than or equal to $$t$$. Then the value of the integral $$\int_{-3}^{101}\left([\sin (\pi x)]+e^{[\cos (2 \pi x)]}\right) d x$$ is equal to

A
$$\frac{52(1-e)}{e}$$
B
$$\frac{52}{e}$$
C
$$\frac{52(2+e)}{e}$$
D
$$\frac{104}{e}$$
2
JEE Main 2022 (Online) 25th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the point $$P(\alpha, \beta)$$ be at a unit distance from each of the two lines $$L_{1}: 3 x-4 y+12=0$$, and $$L_{2}: 8 x+6 y+11=0$$. If $$P$$ lies below $$L_{1}$$ and above $${ }{L_{2}}$$, then $$100(\alpha+\beta)$$ is equal to :

A
$$-$$14
B
42
C
$$-$$22
D
14
3
JEE Main 2022 (Online) 25th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the ellipse $$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$$ meets the line $$\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$$ on the $$x$$-axis and the line $$\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$$ on the $$y$$-axis, then the eccentricity of the ellipse is :

A
$$\frac{5}{7}$$
B
$$\frac{2 \sqrt{6}}{7}$$
C
$$\frac{3}{7}$$
D
$$\frac{2 \sqrt{5}}{7}$$
4
JEE Main 2022 (Online) 25th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the foci of the ellipse $$\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$$ and the hyperbola $$\frac{x^{2}}{144}-\frac{y^{2}}{\alpha}=\frac{1}{25}$$ coincide. Then the length of the latus rectum of the hyperbola is :

A
$$\frac{32}{9}$$
B
$$\frac{18}{5}$$
C
$$\frac{27}{4}$$
D
$$\frac{27}{10}$$
JEE Main Papers
2023
2021
EXAM MAP