Let a line having direction ratios, 1, $$-$$4, 2 intersect the lines $${{x - 7} \over 3} = {{y - 1} \over { - 1}} = {{z + 2} \over 1}$$ and $${x \over 2} = {{y - 7} \over 3} = {z \over 1}$$ at the points A and B. Then (AB)2 is equal to ___________.
The number of points where the function
$$f(x) = \left\{ {\matrix{ {|2{x^2} - 3x - 7|} & {if} & {x \le - 1} \cr {[4{x^2} - 1]} & {if} & { - 1 < x < 1} \cr {|x + 1| + |x - 2|} & {if} & {x \ge 1} \cr } } \right.$$
[t] denotes the greatest integer $$\le$$ t, is discontinuous is _____________.
Let $$f(\theta ) = \sin \theta + \int\limits_{ - \pi /2}^{\pi /2} {(\sin \theta + t\cos \theta )f(t)dt} $$. Then the value of $$\left| {\int_0^{\pi /2} {f(\theta )d\theta } } \right|$$ is _____________.
Let $$\mathop {Max}\limits_{0\, \le x\, \le 2} \left\{ {{{9 - {x^2}} \over {5 - x}}} \right\} = \alpha $$ and $$\mathop {Min}\limits_{0\, \le x\, \le 2} \left\{ {{{9 - {x^2}} \over {5 - x}}} \right\} = \beta $$.
If $$\int\limits_{\beta - {8 \over 3}}^{2\alpha - 1} {Max\left\{ {{{9 - {x^2}} \over {5 - x}},x} \right\}dx = {\alpha _1} + {\alpha _2}{{\log }_e}\left( {{8 \over {15}}} \right)} $$ then $${\alpha _1} + {\alpha _2}$$ is equal to _____________.