1
JEE Main 2022 (Online) 24th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of absolute maximum and absolute minimum values of the function $$f(x) = |2{x^2} + 3x - 2| + \sin x\cos x$$ in the interval [0, 1] is :

A
$$3 + {{\sin (1){{\cos }^2}\left( {{1 \over 2}} \right)} \over 2}$$
B
$$3 + {1 \over 2}(1 + 2\cos (1))\sin (1)$$
C
$$5 + {1 \over 2}(\sin (1) + \sin (2))$$
D
$$2 + \sin \left( {{1 \over 2}} \right)\cos \left( {{1 \over 2}} \right)$$
2
JEE Main 2022 (Online) 24th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\{ {a_i}\} _{i = 1}^n$$, where n is an even integer, is an arithmetic progression with common difference 1, and $$\sum\limits_{i = 1}^n {{a_i} = 192} ,\,\sum\limits_{i = 1}^{n/2} {{a_{2i}} = 120} $$, then n is equal to :

A
48
B
96
C
92
D
104
3
JEE Main 2022 (Online) 24th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If x = x(y) is the solution of the differential equation

$$y{{dx} \over {dy}} = 2x + {y^3}(y + 1){e^y},\,x(1) = 0$$; then x(e) is equal to :

A
$${e^3}({e^e} - 1)$$
B
$${e^e}({e^3} - 1)$$
C
$${e^2}({e^e} + 1)$$
D
$${e^e}({e^2} - 1)$$
4
JEE Main 2022 (Online) 24th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\widehat a$$, $$\widehat b$$ be unit vectors. If $$\overrightarrow c $$ be a vector such that the angle between $$\widehat a$$ and $$\overrightarrow c $$ is $${\pi \over {12}}$$, and $$\widehat b = \overrightarrow c + 2\left( {\overrightarrow c \times \widehat a} \right)$$, then $${\left| {6\overrightarrow c } \right|^2}$$ is equal to :

A
$$6\left( {3 - \sqrt 3 } \right)$$
B
$$3 + \sqrt 3 $$
C
$$6\left( {3 + \sqrt 3 } \right)$$
D
$$6\left( {\sqrt 3 + 1} \right)$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12