If x = x(y) is the solution of the differential equation
$$y{{dx} \over {dy}} = 2x + {y^3}(y + 1){e^y},\,x(1) = 0$$; then x(e) is equal to :
Let $$\widehat a$$, $$\widehat b$$ be unit vectors. If $$\overrightarrow c $$ be a vector such that the angle between $$\widehat a$$ and $$\overrightarrow c $$ is $${\pi \over {12}}$$, and $$\widehat b = \overrightarrow c + 2\left( {\overrightarrow c \times \widehat a} \right)$$, then $${\left| {6\overrightarrow c } \right|^2}$$ is equal to :
The domain of the function
$$f(x) = {{{{\cos }^{ - 1}}\left( {{{{x^2} - 5x + 6} \over {{x^2} - 9}}} \right)} \over {{{\log }_e}({x^2} - 3x + 2)}}$$ is :
The number of one-one functions f : {a, b, c, d} $$\to$$ {0, 1, 2, ......, 10} such
that 2f(a) $$-$$ f(b) + 3f(c) + f(d) = 0 is ___________.