1
JEE Main 2022 (Online) 24th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If x = x(y) is the solution of the differential equation

$$y{{dx} \over {dy}} = 2x + {y^3}(y + 1){e^y},\,x(1) = 0$$; then x(e) is equal to :

A
$${e^3}({e^e} - 1)$$
B
$${e^e}({e^3} - 1)$$
C
$${e^2}({e^e} + 1)$$
D
$${e^e}({e^2} - 1)$$
2
JEE Main 2022 (Online) 24th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\widehat a$$, $$\widehat b$$ be unit vectors. If $$\overrightarrow c $$ be a vector such that the angle between $$\widehat a$$ and $$\overrightarrow c $$ is $${\pi \over {12}}$$, and $$\widehat b = \overrightarrow c + 2\left( {\overrightarrow c \times \widehat a} \right)$$, then $${\left| {6\overrightarrow c } \right|^2}$$ is equal to :

A
$$6\left( {3 - \sqrt 3 } \right)$$
B
$$3 + \sqrt 3 $$
C
$$6\left( {3 + \sqrt 3 } \right)$$
D
$$6\left( {\sqrt 3 + 1} \right)$$
3
JEE Main 2022 (Online) 24th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The domain of the function

$$f(x) = {{{{\cos }^{ - 1}}\left( {{{{x^2} - 5x + 6} \over {{x^2} - 9}}} \right)} \over {{{\log }_e}({x^2} - 3x + 2)}}$$ is :

A
$$( - \infty ,1) \cup (2,\infty )$$
B
$$(2,\infty )$$
C
$$\left[ { - {1 \over 2},1} \right) \cup (2,\infty )$$
D
$$\left[ { - {1 \over 2},1} \right) \cup (2,\infty ) - \left\{ 3,{{{3 + \sqrt 5 } \over 2},{{3 - \sqrt 5 } \over 2}} \right\}$$
4
JEE Main 2022 (Online) 24th June Morning Shift
Numerical
+4
-1
Change Language

The number of one-one functions f : {a, b, c, d} $$\to$$ {0, 1, 2, ......, 10} such

that 2f(a) $$-$$ f(b) + 3f(c) + f(d) = 0 is ___________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12