1
JEE Main 2021 (Online) 25th July Morning Shift
Numerical
+4
-1
Change Language
Let y = y(x) be solution of the following differential equation $${e^y}{{dy} \over {dx}} - 2{e^y}\sin x + \sin x{\cos ^2}x = 0,y\left( {{\pi \over 2}} \right) = 0$$ If $$y(0) = {\log _e}(\alpha + \beta {e^{ - 2}})$$, then $$4(\alpha + \beta )$$ is equal to ______________.
Your input ____
2
JEE Main 2021 (Online) 25th July Morning Shift
Numerical
+4
-1
Change Language
Consider the following frequency distribution :

Class : 10-20 20-30 30-40 40-50 50-60
Frequency : $$\alpha $$ 110 54 30 $$\beta $$


If the sum of all frequencies is 584 and median is 45, then | $$\alpha$$ $$-$$ $$\beta$$ | is equal to _______________.
Your input ____
3
JEE Main 2021 (Online) 25th July Morning Shift
Numerical
+4
-1
Change Language
Let $$\overrightarrow p = 2\widehat i + 3\widehat j + \widehat k$$ and $$\overrightarrow q = \widehat i + 2\widehat j + \widehat k$$ be two vectors. If a vector $$\overrightarrow r = (\alpha \widehat i + \beta \widehat j + \gamma \widehat k)$$ is perpendicular to each of the vectors ($$(\overrightarrow p + \overrightarrow q )$$ and $$(\overrightarrow p - \overrightarrow q )$$, and $$\left| {\overrightarrow r } \right| = \sqrt 3 $$, then $$\left| \alpha \right| + \left| \beta \right| + \left| \gamma \right|$$ is equal to _______________.
Your input ____
4
JEE Main 2021 (Online) 25th July Morning Shift
Numerical
+4
-1
Change Language
The ratio of the coefficient of the middle term in the expansion of (1 + x)20 and the sum of the coefficients of two middle terms in expansion of (1 + x)19 is _____________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12