1
JEE Main 2021 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let 9 distinct balls be distributed among 4 boxes, B1, B2, B3 and B4. If the probability than B3 contains exactly 3 balls is $$k{\left( {{3 \over 4}} \right)^9}$$ then k lies in the set :
A
{x $$\in$$ R : |x $$-$$ 3| < 1}
B
{x $$\in$$ R : |x $$-$$ 2| $$\le$$ 1}
C
{x $$\in$$ R : |x $$-$$ 1| < 1}
D
{x $$\in$$ R : |x $$-$$ 5| $$\le$$ 1}
2
JEE Main 2021 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The number of real roots of the equation $${e^{6x}} - {e^{4x}} - 2{e^{3x}} - 12{e^{2x}} + {e^x} + 1 = 0$$ is :
A
2
B
4
C
6
D
1
3
JEE Main 2021 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let an ellipse $$E:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $${a^2} > {b^2}$$, passes through $$\left( {\sqrt {{3 \over 2}} ,1} \right)$$ and has eccentricity $${1 \over {\sqrt 3 }}$$. If a circle, centered at focus F($$\alpha$$, 0), $$\alpha$$ > 0, of E and radius $${2 \over {\sqrt 3 }}$$, intersects E at two points P and Q, then PQ2 is equal to :
A
$${8 \over 3}$$
B
$${4 \over 3}$$
C
$${{16} \over 3}$$
D
3
4
JEE Main 2021 (Online) 25th July Morning Shift
Numerical
+4
-1
Change Language
Let y = y(x) be solution of the following differential equation $${e^y}{{dy} \over {dx}} - 2{e^y}\sin x + \sin x{\cos ^2}x = 0,y\left( {{\pi \over 2}} \right) = 0$$ If $$y(0) = {\log _e}(\alpha + \beta {e^{ - 2}})$$, then $$4(\alpha + \beta )$$ is equal to ______________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12