1
JEE Main 2021 (Online) 25th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let the lines (2 $$-$$ i)z = (2 + i)$$\overline z $$ and (2 $$+$$ i)z + (i $$-$$ 2)$$\overline z $$ $$-$$ 4i = 0, (here i2 = $$-$$1) be normal to a circle C. If the line iz + $$\overline z $$ + 1 + i = 0 is tangent to this circle C, then its radius is :
A
$${3 \over {2\sqrt 2 }}$$
B
$$3\sqrt 2 $$
C
$${1 \over {2\sqrt 2 }}$$
D
$${3 \over {\sqrt 2 }}$$
2
JEE Main 2021 (Online) 25th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{n \to \infty } {\left( {1 + {{1 + {1 \over 2} + ........ + {1 \over n}} \over {{n^2}}}} \right)^n}$$ is equal to :
A
$${{1 \over 2}}$$
B
1
C
0
D
$${{1 \over e}}$$
3
JEE Main 2021 (Online) 25th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha$$ be the angle between the lines whose direction cosines satisfy the equations l + m $$-$$ n = 0 and l2 + m2 $$-$$ n2 = 0. Then the value of sin4$$\alpha$$ + cos4$$\alpha$$ is :
A
$${{3 \over 8}}$$
B
$${{3 \over 4}}$$
C
$${{1 \over 2}}$$
D
$${{5 \over 8}}$$
4
JEE Main 2021 (Online) 25th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of the integral
$$\int {{{\sin \theta .\sin 2\theta ({{\sin }^6}\theta + {{\sin }^4}\theta + {{\sin }^2}\theta )\sqrt {2{{\sin }^4}\theta + 3{{\sin }^2}\theta + 6} } \over {1 - \cos 2\theta }}} \,d\theta $$ is :
A
$${1 \over {18}}{\left[ {9 - 2{{\cos }^6}\theta - 3{{\cos }^4}\theta - 6{{\cos }^2}\theta } \right]^{{3 \over 2}}} + c$$
B
$${1 \over {18}}{\left[ {11 - 18{{\sin }^2}\theta + 9{{\sin }^4}\theta - 2{{\sin }^6}\theta } \right]^{{3 \over 2}}} + c$$
C
$${1 \over {18}}{\left[ {11 - 18{{\cos }^2}\theta + 9{{\cos }^4}\theta - 2{{\cos }^6}\theta } \right]^{{3 \over 2}}} + c$$
D
$${1 \over {18}}{\left[ {9 - 2{{\sin }^6}\theta - 3{{\sin }^4}\theta - 6{{\sin }^2}\theta } \right]^{{3 \over 2}}} + c$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12