1
JEE Main 2021 (Online) 16th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $${S_k} = \sum\limits_{r = 1}^k {{{\tan }^{ - 1}}\left( {{{{6^r}} \over {{2^{2r + 1}} + {3^{2r + 1}}}}} \right)} $$. Then $$\mathop {\lim }\limits_{k \to \infty } {S_k}$$ is equal to :
A
$${\cot ^{ - 1}}\left( {{3 \over 2}} \right)$$
B
$${\pi \over 2}$$
C
tan$$-$$1 (3)
D
$${\tan ^{ - 1}}\left( {{3 \over 2}} \right)$$
2
JEE Main 2021 (Online) 16th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let the position vectors of two points P and Q be 3$$\widehat i$$ $$-$$ $$\widehat j$$ + 2$$\widehat k$$ and $$\widehat i$$ + 2$$\widehat j$$ $$-$$ 4$$\widehat k$$, respectively. Let R and S be two points such that the direction ratios of lines PR and QS are (4, $$-$$1, 2) and ($$-$$2, 1, $$-$$2), respectively. Let lines PR and QS intersect at T. If the vector $$\overrightarrow {TA} $$ is perpendicular to both $$\overrightarrow {PR} $$ and $$\overrightarrow {QS} $$ and the length of vector $$\overrightarrow {TA} $$ is $$\sqrt 5 $$ units, then the modulus of a position vector of A is :
A
$$\sqrt {171} $$
B
$$\sqrt {227} $$
C
$$\sqrt {482} $$
D
$$\sqrt {5} $$
3
JEE Main 2021 (Online) 16th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The number of elements in the set {x $$\in$$ R : (|x| $$-$$ 3) |x + 4| = 6} is equal to :
A
4
B
2
C
3
D
1
4
JEE Main 2021 (Online) 16th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let a complex number z, |z| $$\ne$$ 1,

satisfy $${\log _{{1 \over {\sqrt 2 }}}}\left( {{{|z| + 11} \over {{{(|z| - 1)}^2}}}} \right) \le 2$$. Then, the largest value of |z| is equal to ____________.
A
5
B
8
C
6
D
7
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12