1
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The solution curve of the differential equation,

(1 + e-x)(1 + y2)$${{dy} \over {dx}}$$ = y2,

which passes through the point (0, 1), is :
A
y2 + 1 = y$$\left( {{{\log }_e}\left( {{{1 + {e^{ - x}}} \over 2}} \right) + 2} \right)$$
B
y2 + 1 = y$$\left( {{{\log }_e}\left( {{{1 + {e^{ x}}} \over 2}} \right) + 2} \right)$$
C
y2 = 1 + $${y{{\log }_e}\left( {{{1 + {e^{ - x}}} \over 2}} \right)}$$
D
y2 = 1 + $${y{{\log }_e}\left( {{{1 + {e^{ x}}} \over 2}} \right)}$$
2
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The function, f(x) = (3x – 7)x2/3, x $$ \in $$ R, is increasing for all x lying in :
A
$$\left( { - \infty ,0} \right) \cup \left( {{3 \over 7},\infty } \right)$$
B
$$\left( { - \infty ,0} \right) \cup \left( {{{14} \over {15}},\infty } \right)$$
C
$$\left( { - \infty ,{{14} \over {15}}} \right)$$
D
$$\left( { - \infty ,{{14} \over {15}}} \right) \cup \left( {0,\infty } \right)$$
3
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of (2.1P0 – 3.2P1 + 4.3P2 .... up to 51th term)
+ (1! – 2! + 3! – ..... up to 51th term) is equal to :
A
1
B
1 + (51)!
C
1 – 51(51)!
D
1 + (52)!
4
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If y2 + loge (cos2x) = y,
$$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$, then :
A
|y''(0)| = 2
B
|y'(0)| + |y''(0)| = 3
C
y''(0) = 0
D
|y'(0)| + |y"(0)| = 1
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12