1
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
For the frequency distribution :
Variate (x) :      x1   x2   x3 ....  x15
Frequency (f) : f1    f2   f3 ...... f15
where 0 < x1 < x2 < x3 < ... < x15 = 10 and
$$\sum\limits_{i = 1}^{15} {{f_i}} $$ > 0, the standard deviation cannot be :
A
6
B
1
C
4
D
2
2
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
2$$\pi $$ - $$\left( {{{\sin }^{ - 1}}{4 \over 5} + {{\sin }^{ - 1}}{5 \over {13}} + {{\sin }^{ - 1}}{{16} \over {65}}} \right)$$ is equal to :
A
$${{7\pi } \over 4}$$
B
$${{5\pi } \over 4}$$
C
$${{3\pi } \over 2}$$
D
$${\pi \over 2}$$
3
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let [t] denote the greatest integer $$ \le $$ t. If for some
$$\lambda $$ $$ \in $$ R - {1, 0}, $$\mathop {\lim }\limits_{x \to 0} \left| {{{1 - x + \left| x \right|} \over {\lambda - x + \left[ x \right]}}} \right|$$ = L, then L is equal to :
A
1
B
2
C
0
D
$${1 \over 2}$$
4
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The solution curve of the differential equation,

(1 + e-x)(1 + y2)$${{dy} \over {dx}}$$ = y2,

which passes through the point (0, 1), is :
A
y2 + 1 = y$$\left( {{{\log }_e}\left( {{{1 + {e^{ - x}}} \over 2}} \right) + 2} \right)$$
B
y2 + 1 = y$$\left( {{{\log }_e}\left( {{{1 + {e^{ x}}} \over 2}} \right) + 2} \right)$$
C
y2 = 1 + $${y{{\log }_e}\left( {{{1 + {e^{ - x}}} \over 2}} \right)}$$
D
y2 = 1 + $${y{{\log }_e}\left( {{{1 + {e^{ x}}} \over 2}} \right)}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12