1
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\alpha $$ and $$\beta $$ are the roots of the equation
x2 + px + 2 = 0 and $${1 \over \alpha }$$ and $${1 \over \beta }$$ are the
roots of the equation 2x2 + 2qx + 1 = 0, then
$$\left( {\alpha - {1 \over \alpha }} \right)\left( {\beta - {1 \over \beta }} \right)\left( {\alpha + {1 \over \beta }} \right)\left( {\beta + {1 \over \alpha }} \right)$$ is equal to :
A
$${9 \over 4}\left( {9 - {q^2}} \right)$$
B
$${9 \over 4}\left( {9 + {q^2}} \right)$$
C
$${9 \over 4}\left( {9 - {p^2}} \right)$$
D
$${9 \over 4}\left( {9 + {p^2}} \right)$$
2
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the number of integral terms in the expansion
of (31/2 + 51/8)n is exactly 33, then the least value of n is :
A
264
B
256
C
128
D
248
3
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\Delta $$ = $$\left| {\matrix{ {x - 2} & {2x - 3} & {3x - 4} \cr {2x - 3} & {3x - 4} & {4x - 5} \cr {3x - 5} & {5x - 8} & {10x - 17} \cr } } \right|$$ =

Ax3 + Bx2 + Cx + D, then B + C is equal to :
A
-1
B
-3
C
9
D
1
4
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of (2.1P0 – 3.2P1 + 4.3P2 .... up to 51th term)
+ (1! – 2! + 3! – ..... up to 51th term) is equal to :
A
1
B
1 + (51)!
C
1 – 51(51)!
D
1 + (52)!
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12