1
JEE Main 2020 (Online) 2nd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let EC denote the complement of an event E. Let E1 , E2 and E3 be any pairwise independent events with P(E1) > 0

and P(E1 $$ \cap $$ E2 $$ \cap $$ E3) = 0.

Then P($$E_2^C \cap E_3^C/{E_1}$$) is equal to :
A
$$P\left( {E_3^C} \right)$$ - P(E2)
B
$$P\left( {E_2^C} \right)$$ + P(E3)
C
$$P\left( {E_3^C} \right)$$ - $$P\left( {E_2^C} \right)$$
D
P(E3) - $$P\left( {E_2^C} \right)$$
2
JEE Main 2020 (Online) 2nd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
For some $$\theta \in \left( {0,{\pi \over 2}} \right)$$, if the eccentricity of the
hyperbola, x2–y2sec2$$\theta $$ = 10 is $$\sqrt 5 $$ times the
eccentricity of the ellipse, x2sec2$$\theta $$ + y2 = 5, then the length of the latus rectum of the ellipse, is :
A
$$\sqrt {30} $$
B
$$2\sqrt 6 $$
C
$${{4\sqrt 5 } \over 3}$$
D
$${{2\sqrt 5 } \over 3}$$
3
JEE Main 2020 (Online) 2nd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{x \to 0} {\left( {\tan \left( {{\pi \over 4} + x} \right)} \right)^{{1 \over x}}}$$ is equal to :
A
2
B
1
C
$$e$$
D
$$e$$2
4
JEE Main 2020 (Online) 2nd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The imaginary part of
$${\left( {3 + 2\sqrt { - 54} } \right)^{{1 \over 2}}} - {\left( {3 - 2\sqrt { - 54} } \right)^{{1 \over 2}}}$$ can be :
A
-2$$\sqrt 6 $$
B
6
C
$$\sqrt 6 $$
D
-$$\sqrt 6 $$
JEE Main Papers
2023
2021
EXAM MAP