1
JEE Main 2016 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The solution of the differential equation

$${{dy} \over {dx}}\, + \,{y \over 2}\,\sec x = {{\tan x} \over {2y}},\,\,$$

where 0 $$ \le $$ x < $${\pi \over 2}$$, and y (0) = 1, is given by :
A
y = 1 $$-$$ $${x \over {\sec x + \tan x}}$$
B
y2 = 1 + $${x \over {\sec x + \tan x}}$$
C
y2 = 1 $$-$$ $${x \over {\sec x + \tan x}}$$
D
y = 1 + $${x \over {\sec x + \tan x}}$$
2
JEE Main 2016 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
A straight line through origin O meets the lines 3y = 10 − 4x and 8x + 6y + 5 = 0 at points A and B respectively. Then O divides the segment AB in the ratio :
A
2 : 3
B
1 : 2
C
4 : 1
D
3 : 4
3
JEE Main 2016 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
A ray of light is incident along a line which meets another line, 7x − y + 1 = 0, at the point (0, 1). The ray is then reflected from this point along the line, y + 2x = 1. Then the equation of the line of incidence of the ray of light is :
A
41x − 38y + 38 = 0
B
41x + 25y − 25 = 0
C
41x + 38y − 38 = 0
D
41x − 25y + 25 = 0
4
JEE Main 2016 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of the integral

$$\int\limits_4^{10} {{{\left[ {{x^2}} \right]dx} \over {\left[ {{x^2} - 28x + 196} \right] + \left[ {{x^2}} \right]}}} ,$$

where [x] denotes the greatest integer less than or equal to x, is :
A
6
B
3
C
7
D
$${1 \over 3}$$
JEE Main Papers
2023
2021
EXAM MAP