1
JEE Main 2016 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f(x) = sin4x + cos4 x. Then f is an increasing function in the interval :
A
$$] 0, \frac{\pi}{4}[$$
B
$$] \frac{\pi}{4}, \frac{\pi}{2}[$$
C
$$] \frac{\pi}{2}, \frac{5 \pi}{8}[$$
D
$$] \frac{5 \pi}{8}, \frac{3 \pi}{4}[$$
2
JEE Main 2016 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let a, b $$ \in $$ R, (a $$ \ne $$ 0). If the function f defined as

$$f\left( x \right) = \left\{ {\matrix{ {{{2{x^2}} \over a}\,\,,} & {0 \le x < 1} \cr {a\,\,\,,} & {1 \le x < \sqrt 2 } \cr {{{2{b^2} - 4b} \over {{x^3}}},} & {\sqrt 2 \le x < \infty } \cr } } \right.$$

is continuous in the interval [0, $$\infty $$), then an ordered pair ( a, b) is :
A
$$\left( {\sqrt 2 ,1 - \sqrt 3 } \right)$$
B
$$\left( { - \sqrt 2 ,1 + \sqrt 3 } \right)$$
C
$$\left( {\sqrt 2 , - 1 + \sqrt 3 } \right)$$
D
$$\left( { - \sqrt 2 ,1 - \sqrt 3 } \right)$$
3
JEE Main 2016 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{x \to 0} \,{{{{\left( {1 - \cos 2x} \right)}^2}} \over {2x\,\tan x\, - x\tan 2x}}$$ is :
A
$$-$$ 2
B
$$-$$ $${1 \over 2}$$
C
$${1 \over 2}$$
D
2
4
JEE Main 2016 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Consider an electromagnetic wave propagating in vacuum. Choose the correct statement :
A
For an electromagnetic wave propagating in +x direction the electric field is $$\vec E = {1 \over {\sqrt 2 }}{E_{yz}}{\mkern 1mu} \left( {x,t} \right)\left( {\hat y - \hat z} \right)$$

and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz}}{\mkern 1mu} \left( {x,t} \right)\left( {\hat y + \hat z} \right)$$
B
For an electromagnetic wave propagating in +x direction the electric field is $$\vec E = {1 \over {\sqrt 2 }}{E_{yz{\mkern 1mu} }}\left( {y,z,t} \right)\left( {\hat y + \hat z} \right)$$

and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz{\mkern 1mu} }}\left( {y,z,t} \right)\left( {\hat y + \hat z} \right)$$
C
For an electromagnetic wave propagating in + y direction the electric field is $$\overrightarrow E = {1 \over {\sqrt 2 }}{E_{yz{\mkern 1mu} }}\left( {x,t} \right)\widehat y$$
and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz{\mkern 1mu} }}\left( {x,t} \right)\widehat z$$
D
For an electromagnetic wave propagating in + y direction the electric field is $$\overrightarrow E = {1 \over {\sqrt 2 }}{E_{yz{\mkern 1mu} }}\left( {x,t} \right)\widehat z$$
and the magnetic field is $$\overrightarrow B = {1 \over {\sqrt 2 }}{B_{z{\mkern 1mu} }}\left( {x,t} \right)\widehat y$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12