The titration curve of weak acid vs. strong base with phenolphthalein as indictor) is shown below. The $$\mathrm{K}_{\text {phenolphthalein }}=4 \times 10^{-10}$$.
Given: $$\log 2=0.3$$
The number of following statement/s which is/are correct about phenolphthalein is ___________
A. It can be used as an indicator for the titration of weak acid with weak base.
B. It begins to change colour at $$\mathrm{pH}=8.4$$
C. It is a weak organic base
D. It is colourless in acidic medium
(Given mass of $\mathrm{Ag}$ is $107.9 \mathrm{~g} \mathrm{~mol}^{-1}$ and mass of $\mathrm{Cl}$ is $35.5 \mathrm{~g} \mathrm{~mol}^{-1}$ )
$$600 \mathrm{~mL}$$ of $$0.01~\mathrm{M} ~\mathrm{HCl}$$ is mixed with $$400 \mathrm{~mL}$$ of $$0.01~\mathrm{M} ~\mathrm{H}_{2} \mathrm{SO}_{4}$$. The $$\mathrm{pH}$$ of the mixture is ___________ $$\times 10^{-2}$$. (Nearest integer)
[Given $$\log 2=0.30$$
$$\log 3=0.48$$
$$\log 5=0.69$$
$$\log 7=0.84$$
$$\log 11=1.04]$$
Millimoles of calcium hydroxide required to produce 100 mL of the aqueous solution of pH 12 is $$x\times10^{-1}$$. The value of $$x$$ is ___________ (Nearest integer).
Assume complete dissociation.