The pH of a 0.01 M weak acid $\mathrm{HX}\left(\mathrm{K}_a=4 \times 10^{-10}\right)$ is found to be 5 . Now the acid solution is diluted with excess of water so that the pH of the solution changes to 6 . The new concentration of the diluted weak acid is given as $x \times 10^{-4} \mathrm{M}$. The value of $x$ is _________ (nearest integer)
The observed and normal molar masses of compound $\mathrm{MX}_2$ are 65.6 and 164 respectively. The percent degree of ionisation of $\mathrm{MX}_2$ is __________%. (Nearest integer)
If 1 mM solution of ethylamine produces $\mathrm{pH}=9$, then the ionization constant $\left(\mathrm{K}_{\mathrm{b}}\right)$ of ethylamine is $10^{-x}$. The value of $x$ is _________ (nearest integer).
[The degree of ionization of ethylamine can be neglected with respect to unity.]
Consider the dissociation of the weak acid HX as given below
$$\mathrm{HX}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}), \mathrm{Ka}=1.2 \times 10^{-5}$$
[$$\mathrm{K}_{\mathrm{a}}$$ : dissociation constant]
The osmotic pressure of $$0.03 \mathrm{M}$$ aqueous solution of $$\mathrm{HX}$$ at $$300 \mathrm{~K}$$ is _________ $$\times 10^{-2}$$ bar (nearest integer).
[Given : $$\mathrm{R}=0.083 \mathrm{~L} \mathrm{~bar} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$$]