Let the eccentricity of an ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $$a > b$$, be $${1 \over 4}$$. If this ellipse passes through the point $$\left( { - 4\sqrt {{2 \over 5}} ,3} \right)$$, then $${a^2} + {b^2}$$ is equal to :
If two straight lines whose direction cosines are given by the relations $$l + m - n = 0$$, $$3{l^2} + {m^2} + cnl = 0$$ are parallel, then the positive value of c is :
Let $$\overrightarrow a = \widehat i + \widehat j - \widehat k$$ and $$\overrightarrow c = 2\widehat i - 3\widehat j + 2\widehat k$$. Then the number of vectors $$\overrightarrow b $$ such that $$\overrightarrow b \times \overrightarrow c = \overrightarrow a $$ and $$|\overrightarrow b | \in $$ {1, 2, ........, 10} is :
Five numbers $${x_1},{x_2},{x_3},{x_4},{x_5}$$ are randomly selected from the numbers 1, 2, 3, ......., 18 and are arranged in the increasing order $$({x_1} < {x_2} < {x_3} < {x_4} < {x_5})$$. The probability that $${x_2} = 7$$ and $${x_4} = 11$$ is :