1
JEE Main 2022 (Online) 24th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$y = {\tan ^{ - 1}}\left( {\sec {x^3} - \tan {x^3}} \right),{\pi \over 2} < {x^3} < {{3\pi } \over 2}$$, then

A
$$xy'' + 2y' = 0$$
B
$${x^2}y'' - 6y + {{3\pi } \over 2} = 0$$
C
$${x^2}y'' - 6y + 3\pi = 0$$
D
$$xy'' - 4y' = 0$$
2
JEE Main 2022 (Online) 24th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\lambda$$$$^ * $$ be the largest value of $$\lambda$$ for which the function $${f_\lambda }(x) = 4\lambda {x^3} - 36\lambda {x^2} + 36x + 48$$ is increasing for all x $$\in$$ R. Then $${f_{{\lambda ^ * }}}(1) + {f_{{\lambda ^ * }}}( - 1)$$ is equal to :

A
36
B
48
C
64
D
72
3
JEE Main 2022 (Online) 24th June Evening Shift
Numerical
+4
-1
Change Language

Let S = {z $$\in$$ C : |z $$-$$ 3| $$\le$$ 1 and z(4 + 3i) + $$\overline z $$(4 $$-$$ 3i) $$\le$$ 24}. If $$\alpha$$ + i$$\beta$$ is the point in S which is closest to 4i, then 25($$\alpha$$ + $$\beta$$) is equal to ___________.

Your input ____
4
JEE Main 2022 (Online) 24th June Evening Shift
Numerical
+4
-1
Change Language

Let $$S = \left\{ {\left( {\matrix{ { - 1} & a \cr 0 & b \cr } } \right);a,b \in \{ 1,2,3,....100\} } \right\}$$ and let $${T_n} = \{ A \in S:{A^{n(n + 1)}} = I\} $$. Then the number of elements in $$\bigcap\limits_{n = 1}^{100} {{T_n}} $$ is ___________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12