If the shortest distance between the lines $${{x - 1} \over 2} = {{y - 2} \over 3} = {{z - 3} \over \lambda }$$ and $${{x - 2} \over 1} = {{y - 4} \over 4} = {{z - 5} \over 5}$$ is $${1 \over {\sqrt 3 }}$$, then the sum of all possible value of $$\lambda$$ is :
Let $$\widehat a$$ and $$\widehat b$$ be two unit vectors such that $$|(\widehat a + \widehat b) + 2(\widehat a \times \widehat b)| = 2$$. If $$\theta$$ $$\in$$ (0, $$\pi$$) is the angle between $$\widehat a$$ and $$\widehat b$$, then among the statements :
(S1) : $$2|\widehat a \times \widehat b| = |\widehat a - \widehat b|$$
(S2) : The projection of $$\widehat a$$ on ($$\widehat a$$ + $$\widehat b$$) is $${1 \over 2}$$
If $$y = {\tan ^{ - 1}}\left( {\sec {x^3} - \tan {x^3}} \right),{\pi \over 2} < {x^3} < {{3\pi } \over 2}$$, then
Let $$\lambda$$$$^ * $$ be the largest value of $$\lambda$$ for which the function $${f_\lambda }(x) = 4\lambda {x^3} - 36\lambda {x^2} + 36x + 48$$ is increasing for all x $$\in$$ R. Then $${f_{{\lambda ^ * }}}(1) + {f_{{\lambda ^ * }}}( - 1)$$ is equal to :