1
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The locus of mid-points of the line segments joining ($$-$$3, $$-$$5) and the points on the ellipse $${{{x^2}} \over 4} + {{{y^2}} \over 9} = 1$$ is :
A
$$9{x^2} + 4{y^2} + 18x + 8y + 145 = 0$$
B
$$36{x^2} + 16{y^2} + 90x + 56y + 145 = 0$$
C
$$36{x^2} + 16{y^2} + 108x + 80y + 145 = 0$$
D
$$36{x^2} + 16{y^2} + 72x + 32y + 145 = 0$$
2
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $${{dy} \over {dx}} = {{{2^x}y + {2^y}{{.2}^x}} \over {{2^x} + {2^{x + y}}{{\log }_e}2}}$$, y(0) = 0, then for y = 1, the value of x lies in the interval :
A
(1, 2)
B
$$\left( {{1 \over 2},1} \right]$$
C
(2, 3)
D
$$\left( {0,{1 \over 2}} \right]$$
3
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$y{{dy} \over {dx}} = x\left[ {{{{y^2}} \over {{x^2}}} + {{\phi \left( {{{{y^2}} \over {{x^2}}}} \right)} \over {\phi '\left( {{{{y^2}} \over {{x^2}}}} \right)}}} \right]$$, x > 0, $$\phi$$ > 0, and y(1) = $$-$$1, then $$\phi \left( {{{{y^2}} \over 4}} \right)$$ is equal to :
A
4 $$\phi$$ (2)
B
4$$\phi$$ (1)
C
2 $$\phi$$ (1)
D
$$\phi$$ (1)
4
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The sum of the roots of the equation

$$x + 1 - 2{\log _2}(3 + {2^x}) + 2{\log _4}(10 - {2^{ - x}}) = 0$$, is :
A
log2 14
B
log2 11
C
log2 12
D
log2 13
JEE Main Papers
2023
2021
EXAM MAP