1
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\alpha$$ + $$\beta$$ + $$\gamma$$ = 2$$\pi$$, then the system of equations

x + (cos $$\gamma$$)y + (cos $$\beta$$)z = 0

(cos $$\gamma$$)x + y + (cos $$\alpha$$)z = 0

(cos $$\beta$$)x + (cos $$\alpha$$)y + z = 0

has :
A
no solution
B
infinitely many solution
C
exactly two solutions
D
a unique solution
2
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The domain of the function

$$f(x) = {\sin ^{ - 1}}\left( {{{3{x^2} + x - 1} \over {{{(x - 1)}^2}}}} \right) + {\cos ^{ - 1}}\left( {{{x - 1} \over {x + 1}}} \right)$$ is :
A
$$\left[ {0,{1 \over 4}} \right]$$
B
$$[ - 2,0] \cup \left[ {{1 \over 4},{1 \over 2}} \right]$$
C
$$\left[ {{1 \over 4},{1 \over 2}} \right] \cup \{ 0\} $$
D
$$\left[ {0,{1 \over 2}} \right]$$
3
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let S = {1, 2, 3, 4, 5, 6}. Then the probability that a randomly chosen onto function g from S to S satisfies g(3) = 2g(1) is :
A
$${1 \over {10}}$$
B
$${1 \over {15}}$$
C
$${1 \over {5}}$$
D
$${1 \over {30}}$$
4
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : N $$\to$$ N be a function such that f(m + n) = f(m) + f(n) for every m, n$$\in$$N. If f(6) = 18, then f(2) . f(3) is equal to :
A
6
B
54
C
18
D
36
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12