1
JEE Main 2021 (Online) 26th August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the value of the integral
$$\int\limits_0^5 {{{x + [x]} \over {{e^{x - [x]}}}}dx = \alpha {e^{ - 1}} + \beta } $$, where $$\alpha$$, $$\beta$$ $$\in$$ R, 5$$\alpha$$ + 6$$\beta$$ = 0, and [x] denotes the greatest integer less than or equal to x; then the value of ($$\alpha$$ + $$\beta$$)2 is equal to :
A
100
B
25
C
16
D
36
2
JEE Main 2021 (Online) 26th August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let y(x) be the solution of the differential equation

2x2 dy + (ey $$-$$ 2x)dx = 0, x > 0. If y(e) = 1, then y(1) is equal to :
A
0
B
2
C
loge 2
D
loge (2e)
3
JEE Main 2021 (Online) 26th August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The domain of the function $${{\mathop{\rm cosec}\nolimits} ^{ - 1}}\left( {{{1 + x} \over x}} \right)$$ is :
A
$$\left( { - 1, - {1 \over 2}} \right] \cup (0,\infty )$$
B
$$\left[ { - {1 \over 2},0} \right) \cup [1,\infty )$$
C
$$\left( { - {1 \over 2},\infty } \right) - \{ 0\} $$
D
$$\left[ { - {1 \over 2},\infty } \right) - \{ 0\} $$
4
JEE Main 2021 (Online) 26th August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
A fair die is tossed until six is obtained on it. Let x be the number of required tosses, then the conditional probability P(x $$\ge$$ 5 | x > 2) is :
A
$${{125} \over {216}}$$
B
$${{11} \over {36}}$$
C
$${{5} \over {6}}$$
D
$${{25} \over {36}}$$
JEE Main Papers
2023
2021
EXAM MAP