1
JEE Main 2021 (Online) 22th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Four dice are thrown simultaneously and the numbers shown on these dice are recorded in 2 $$\times$$ 2 matrices. The probability that such formed matrix have all different entries and are non-singular, is :
A
$${{45} \over {162}}$$
B
$${{21} \over {81}}$$
C
$${{22} \over {81}}$$
D
$${{43} \over {162}}$$
2
JEE Main 2021 (Online) 22th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\int\limits_0^{100\pi } {{{{{\sin }^2}x} \over {{e^{\left( {{x \over \pi } - \left[ {{x \over \pi }} \right]} \right)}}}}dx = {{\alpha {\pi ^3}} \over {1 + 4{\pi ^2}}},\alpha \in R} $$ where [x] is the greatest integer less than or equal to x, then the value of $$\alpha$$ is :
A
200 (1 $$-$$ e$$-$$1)
B
100 (1 $$-$$ e)
C
50 (e $$-$$ 1)
D
150 (e$$-$$1 $$-$$ 1)
3
JEE Main 2021 (Online) 22th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The values of $$\lambda$$ and $$\mu$$ such that the system of equations $$x + y + z = 6$$, $$3x + 5y + 5z = 26$$, $$x + 2y + \lambda z = \mu $$ has no solution, are :
A
$$\lambda$$ = 3, $$\mu$$ = 5
B
$$\lambda$$ = 3, $$\mu$$ $$\ne$$ 10
C
$$\lambda$$ $$\ne$$ 2, $$\mu$$ = 10
D
$$\lambda$$ = 2, $$\mu$$ $$\ne$$ 10
4
JEE Main 2021 (Online) 22th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the shortest distance between the straight lines $$3(x - 1) = 6(y - 2) = 2(z - 1)$$ and $$4(x - 2) = 2(y - \lambda ) = (z - 3),\lambda \in R$$ is $${1 \over {\sqrt {38} }}$$, then the integral value of $$\lambda$$ is equal to :
A
3
B
2
C
5
D
$$-$$1
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12